

DPP - 2 (EM Waves)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/45

Video Solution on YouTube:-

https://youtu.be/6wxjHktfL0o

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/67

- Q 1. The sun delivers $10^4 \text{W/}m^2$ of electromagnetic flux to earth's surface. The total power that is incident on a roof dimensions $(10 \times 10)m^2$ will be:
 - (a) 10^4 W

(b) 10^5 W

(c) 10^6 W

- $(d) \ 10^7 \ W$
- Q 2. The sun delivers about 1.4 KW m^{-2} of electromagnetic flux to the earth's surface. Calculate the solar energy in joules incident on the roof of dimensions 8m×20m in 1 hour
 - (a) 205.6 MJ
- (b) 806.4 MJ

(c) 122 J

- (d) 102.3 MJ
- Q 3. The sun delivers $10^3 \text{W/}m^2$ of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions $8\text{m}\times20\text{m}$ is $1.6\times10^5\text{W}$, the radiation force on the roof will be- (The whole incident electromagnetic flux is absorbed by the earth)
 - (a) 53 N

(b) 5.3 N

(c) 5.3×10^{-4} N

- (d) 5.3×10^{-6} N
- Q 4. Electromagnetic radiation with energy flux $50 \text{ W} \text{cm}^{-2}$ is incident on a totally absorbing surface normally for 1 hour. If the surface has an area of 0.05 m^2 , then the average force due to the radiation pressure, on it is,
 - (a) 8.3×10^{-7} N

(b) 8.3×10^{-5} N

(c) 1.2×10^{-7} N

- (d) $1.2 \times 10^{-5} \text{ N}$
- Q 5. Light with an energy flux of 25×10^4 Wm⁻² falls on a perfectly reflecting surface at normal incidence. If the surface area is 15 cm^2 , the average force exerted on the surface is
 - (a) $1.25 \times 10^{-6} \text{ N}$

(b) $2.5 \times 10^{-6} \text{ N}$

(c) $1.20 \times 10^{-6} \text{ N}$

- (d) $3 \times 10^{-6} \text{ N}$
- Q 6. Light with energy flux of $18 \text{ W/}cm^2$ falls on a non reflecting surface of area 20 cm^2 at normal incidence the momentum delivered in 30 minutes is
 - (a) 1.2×10^{-6} Kg-m/s

(b) $2.16 \times 10^{-3} \text{ Kg-m/s}$

(c) $1.18 \times 10^{-3} \text{ Kg-m/s}$

- (d) 3.2×10^{-3} Kg-m/s
- Q 7. Light with energy flux $18 \text{ W} \text{cm}^{-2}$ is incident on a mirror of size $2\text{cm} \times 2\text{cm}$ normally. The momentum delivered in one minute is
 - (a) 28.8 μ Kg-m/s

(b) $2.88 \mu \text{Kg-m/s}$

(c) $4.8 \mu \text{Kg-m/s}$

(d) $48 \mu \text{Kg-m/s}$

hysicsaholics

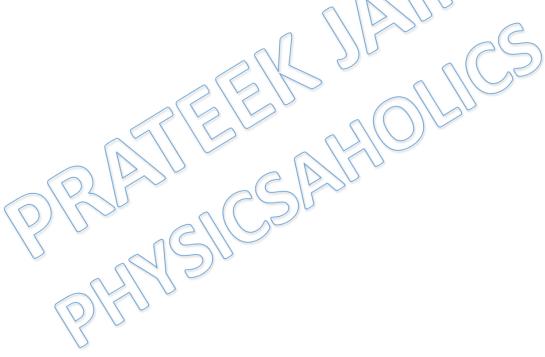
- Q 8. Light with energy flux of $24 \text{ W}m^{-2}$ is incident on a well polished disc of radius 3.5 cm for one hour. The momentum transferred to the disc is
 - (a) 1.1 μ Kg-m/s

(b) $2.2 \mu \text{Kg-m/s}$

(c) $3.3 \mu \text{Kg-m/s}$

- (d) $4.4 \mu \text{Kg-m/s}$
- Q 9. Find the amplitude of the electric field in a parallel beam of light of intensity 8.0 W/m^2
 - (a) 77.7 N/C

(b) 33.3 N/C


(c) 28.8 N/C

- (d) 83.6 N/C
- Q 10. Find the amplitude of magnetic field in parallel beam of light of intensity $4.0 \text{W}/m^2$
 - (a) 18.3×10^{-5} T

(b) 1.83×10^{-6} T

(c) 28.3×10^{-7} T

(d) 1.83×10^{-7} T

Answer Key

Q.1	c	Q.2	b	Q.3	c	Q.4	b	Q.5 b
Q.6	b	Q.7	a	Q.8	b	Q.9	a	Q.10 d