

DPP - 2 (EM Waves)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/45

Video Solution on YouTube:-
 Written Solution on Website:-
 https://youtu.be/6wxjHktfLOo
 https://physicsaholics.com/note/notesDetalis/67

Q 1. The sun delivers $10^{4} \mathrm{~W} / \mathrm{m}^{2}$ of electromagnetic flux to earth's surface. The total power that is incident on a roof dimensions $(10 \times 10) \mathrm{m}^{2}$ will be:
(a) $10^{4} \mathrm{~W}$
(b) $10^{5} \mathrm{~W}$
(c) $10^{6} \mathrm{~W}$
(d) $10^{7} \mathrm{~W}$

Q 2. The sun delivers about $1.4 \mathrm{KWm}^{-2}$ of electromagnetic flux to the earth's surface.
Calculate the solar energy in joules incident on the roof of dimensions $8 \mathrm{~m} \times 20 \mathrm{~m}$ in 1 hour
(a) 205.6 MJ
(b) 806.4 MJ
(c) 122 J
(d) 102.3 MJ

Q 3. The sun delivers $10^{3} \mathrm{~W} / \mathrm{m}^{2}$ of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions $8 \mathrm{~m} \times 20 \mathrm{~m}$ is $1.6 \times 10^{5} \mathrm{~W}$, the radiation force on the roof will be- (The whole incident electromagnetic flux is absorbed by the earth)
(a) 53 N
(b) 5.3 N
(c) $5.3 \times 10^{-4} \mathrm{~N}$
(d) $5.3 \times 10^{-6} \mathrm{~N}$

Q 4. Electromagnetic radiation with energy flux $50 \mathrm{Wcm}^{-2}$ is incident on a totally absorbing surface normally for 1 hour. If the surface has an area of $0.05 \mathrm{~m}^{2}$, then the average force due to the radiation pressure, on it is,
(a) $8.3 \times 10^{-7} \mathrm{~N}$
(b) $8.3 \times 10^{-5} \mathrm{~N}$
(c) $1.2 \times 10^{-7} \mathrm{~N}$
(d) $1.2 \times 10^{-5} \mathrm{~N}$

Q 5. Light with an energy flux of $25 \times 10^{4} \mathrm{Wm}^{-2}$ falls on a perfectly reflecting surface at normal incidence. If the surface area is $15 \mathrm{~cm}^{2}$, the average force exerted on the surface is
(a) $1.25 \times 10^{-6} \mathrm{~N}$
(b) $2.5 \times 10^{-6} \mathrm{~N}$
(c) $1.20 \times 10^{-6} \mathrm{~N}$
(d) $3 \times 10^{-6} \mathrm{~N}$

Q 6. Light with energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non reflecting surface of area $20 \mathrm{~cm}^{2}$ at normal incidence the momentum delivered in 30 minutes is
(a) $1.2 \times 10^{-6} \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(b) $2.16 \times 10^{-3} \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(c) $1.18 \times 10^{-3} \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(d) $3.2 \times 10^{-3} \mathrm{Kg}-\mathrm{m} / \mathrm{s}$

Q 7. Light with energy flux $18 \mathrm{Wcm}^{-2}$ is incident on a mirror of size $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ normally. The momentum delivered in one minute is
(a) $28.8 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(b) $2.88 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(c) $4.8 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(d) $48 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$

Q 8. Light with energy flux of $24 \mathrm{Wm}^{-2}$ is incident on a well polished disc of radius 3.5 cm for one hour. The momentum transferred to the disc is
(a) $1.1 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(b) $2.2 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(c) $3.3 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$
(d) $4.4 \mu \mathrm{Kg}-\mathrm{m} / \mathrm{s}$

Q 9. Find the amplitude of the electric field in a parallel beam of light of intensity 8.0 W / m^{2}
(a) $77.7 \mathrm{~N} / \mathrm{C}$
(b) $33.3 \mathrm{~N} / \mathrm{C}$
(c) $28.8 \mathrm{~N} / \mathrm{C}$
(d) $83.6 \mathrm{~N} / \mathrm{C}$

Q 10. Find the amplitude of magnetic field in parallel beam of light of intensity $4.0 \mathrm{~W} / \mathrm{m}^{2}$
(a) $18.3 \times 10^{-5} \mathrm{~T}$
(b) $1.83 \times 10^{-6} \mathrm{~T}$
(c) $28.3 \times 10^{-7} \mathrm{~T}$
(d) $1.83 \times 10^{-7} \mathrm{~T}$

Answer Key

Q. 1	\mathbf{c}	Q. 2	b	Q.	c	Q. 4	b	Q. 5	b
Q. 6	b	Q. 7	a	Q. 8	b	Q.9	a	Q.10	d

